当前位置: 首页> 网络科技> 数码> 正文

储能电池热管理概念(储能电池热管理技术类型)

  • 蝴蝶为花醉〃蝴蝶为花醉〃
  • 数码
  • 2023-05-03 21:20:02
  • -
电池热管理系统及设计流程 零部件类型及选型 系统性能及验证

简述电池热管理的几和方式及其基本原理

电池热管理系统 (Battery Thermal Management System, BTMS)是电池管理系统(Battery Management System, BMS)的主要功能(电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等)之一,通过导热介质、测控单元以及温控设备构成闭环调节系统,使动力电池工作在合适的温度范围之内,以维持其最佳的使用状态,用以保证电池系统的性能和寿命。

[img]

动力电池的热管理是指什么?

电池组的热管理是汽车动力电池系统的重要组成部分,不仅对电池的寿命,性能,安全等有重大影响,而且还是电动汽车整车热管理的重要组成部分。主要功能是:对电池表面温度高时进行有效散热,防止产生热失控事故。在电池温度较低时进行预热,提升电池温度,确保低温下正常充电放电时的安全性和有效性。减少电池组内的温度差异,抑制局部热区的形成,防止高温处电池过快衰减,降低电池组的整体寿命。

从车用到储能 离不开动力电池热失控管理

电池的热管理系统指的是什么?

电池热管理,是根据温度对电池性能的影响,结合电池的电化学特性与产热机理,基于具体电池的最佳充放电温度区间,通过合理的设计,建立在材料学、电化学、传热学、分子动力学等多学科多领域基础之上,为解决电池在温度过高或过低情况下工作而引起热散逸或热失控问题,以提升电池整体性能的一门新技术。

动力锂电池组热管理必要性及发展趋势:

与产能过剩带来的近忧相比,锂电池组安全问题尤其是电池热管理这个远虑似乎并未引起人们足够的重视。随着温度的降低,锂电池组放电性能显著下降,放电平台明显降低,放电容量明显减小。当温度降至-30℃时,锂电池组的放电容量为室温放电容量的87.0%,长时间在低温环境中使用,或者在-40℃超低温环境中,电源会被冻坏造成永久损害。因此,锂电池组的热管理尤为必要。

当前,锂电池低温加热主要有两种方式,一种是可变式电阻加热,包括PTC加热板和碳膜加热板;一种是恒定电阻加热,包含硅胶加热板、PI加热膜、环氧板加热膜。

实验数据显示,能量型锂电池组在绝热的环境下1C充电45分钟后,电芯内部的温升都在10摄氏度以上,有的甚至在15摄氏度以上。对满电电芯的实验显示,在绝热的环境下,用外源对电芯加热到50度,电芯内部就开始有自反应,温度开始升高,虽然上升较慢,但最后结果是燃烧失效。

锂电池组热管理系统有如下5项主要功能:

①电池温度的准确测量和监控

②电池组温度过高时的有效散热和通风

③低温条件下的快速加热

④有害气体产生时的有效通风

⑤保证锂电池组温度场的均匀分布

电池的热管理有哪些

动力电池热管理系统的功能

由于过高或过低的温度都将直接影响动力电池的使用寿命和性能,并有可能导致电池系统的安全问题,并且电池箱内温度场的长久不均匀分布将造成各电池模块、单体间性能的不均衡,因此,电池热管理系统对于电动车辆动力电池系统而言是必需的。可靠、高效的热管理系统对于电动车辆的可靠安全应用意义重大。

电池组热管理系统有如下5项主要功能:

①电池温度的准确测量和监控。

②电池组温度过高时的有效散热和通风。

③低温条件下的快速加热。

④有害气体产生时的有效通风。

⑤保证电池组温度场的均匀分布。

二、电池内传热的基本方式

电池内热传递方式主要有热传导、对流换热和辐射换热3种方式。

电池和环境交换的热量也是通过辐射、传导和对流3种方式进行的。热辐射主要发生在电池表面,与电池表面材料的性质相关。

热传导是指物质与物体直接接触而产生的热传递。电池内部的电极、电解液、集流体等都是热传导介质,而将电池作为整体,电池和环境界面层的温度和环境热传导性质决定了环境中的热传导。

热对流是指电池表面的热量通过环境介质(一般为流体)的流动交换热量,它也和温差成正比。

对于单体电池内部而言,热辐射和热对流的影响很小,热量的传递主要是由热传导决定的。电池自身吸热的大小与其材料的比热容有关,比热容越大,散热越多,电池的温升越小。如果散热量大于或等于产生的热量,则电池温度不会升高。如果散热量小于所产生的热量,热量将会在电池体内产生热积累,电池温度升高。

三、电池组热管理系统

设计实现按照传热介质,可将电池组热管理系统分为空冷、液冷和相变材料冷却3种。考虑到材料的研发以及制造成本等问题,目前最有效且最常用的散热系统是采用空气作为散热介质。按照散热风道结构,空冷系统又可分为串行通风方式和并行通风方式两种

液冷热管理 埃泰斯新能源重点支持第十二届中国国际储能大会召开

随机推荐